Annual Drinking Water Quality Report for 2024 Rosendale Water District Public Water Supply ID# NY5503383

INTRODUCTION

To comply with State regulations, the Rosendale Water District is required to annually issue a report describing the quality of your drinking water. The purpose of this report is to raise your understanding of drinking water and awareness of the need to protect our drinking water sources. In <u>2024</u>, your tap water met all State drinking water health standards. We are proud to report that our system did not violate a maximum contaminant level or any other water quality standard. This report provides an overview of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to State standards.

If you have any questions about this report or concerning your drinking water, please contact the water system operator at, (845) 658-3159 or the Ulster County Department of Health (845) 340-3010.

WHERE DOES OUR WATER COME FROM?

In general, the sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activities. Contaminants that may be present in source water include microbial contaminants; inorganic contaminants; pesticides and herbicides; organic chemical contaminants; and radioactive contaminants. To ensure that tap water is safe to drink, the State and the EPA prescribe regulations which limit the number of certain contaminants in water provided by public water systems. The State Health Departments and the FDA's regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Our water system serves 2,200 residents through 586 service connections. Our water source is a surface water supply known as The Still Pond Reservoir with an auxiliary ground water source referred to as Well #1, (formerly the Renda Well). Water from the Still Pond Reservoir is filtered and disinfected. The Well supply is treated with an ion exchange unit and then disinfected. Well Number I is put into service whenever the Still Pond Reservoir cannot meet the system's demand for water. The Water District has a five hundred-thousand-gallon water storage tank, which provides fire protection to sixty percent of the district's residents, and it also provides a 3-to-4-day reserve in case of a supply failure. The other 40% of the town receives fire protection from a 50,000 gallons water tank that is located on Mountain Road. Both the Still Pond Filter Plant and the Well treatment Facility have emergency power supplies to enable the systems to operate in the event of a prolonged power failure.

Please see the "Table of Detected Contaminants" below for a list of the contaminants that have been detected.

ARE THERE CONTAMINANTS IN OUR DRINKING WATER?

As the State regulations require, we routinely test your drinking water for numerous contaminants. These contaminants include total coliform, turbidity, inorganic compounds, nitrate, nitrite, lead and copper, volatile organic compounds, total trihalomethanes, haloacetic acids, radiological and synthetic organic compounds. The table presented below depicts which compounds were detected in your drinking water. The State allows us to test for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, is more than one year old.

It should be noted that all drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791) or the Ulster County Department of Health at (845) 340-3010, or by viewing the EPA drinking water website, www.epe.gov/safewater, and the New York State Health Department website, www.health.state.ny.us.

Table of Detected Contaminants											
Contaminant	Violation Yes/No	Date of Sample	Level Detected (Avg/Max) (Range)	Unit Measure	MCLG	Regulatory Limit (MCL, TT or AL)	Likely Source of Contamination				
Biological Contaminants											
Total Coliform	No	Two samples per month	Zero Positive	N/A	N/A	MCL=2 or more positive samples	Naturally present in the environment				
Turbidity	Yes	2024	3.66 (1) Range 0.020-3.66	NTU	N/A	TT=<1.0	Soil Runoff				
Total Organic Carbon	No	2024	2024 Influent Range- (1.4-2.9) Entry Point Range- (1.1-2.1)	Mg/l	N/A	TT	Naturally present in the environment.				

	Table of Detected Contaminants									
Contaminant	Violation Yes/No	Date of Sample	Level Detected (Avg/Max) (Range)	Unit Measure	MCLG	Regulatory Limit (MCL, TT or AL)	Likely Source of Contamination			
Barium	No 1	1/26/24	27.4	Mg/l	2	2	Discharge of drilling wastes; discharge from refineries; erosion of natural deposits.			

Nickle	No	9/14/22	0.0016	Mg/l		2	2	Nickel is used in the nickel/chrome plating on taps and plumbing fittings.			
Fluoride	No	11/26/24	0.50	Mg/l		N/A	MCL=2.2	Erosion of natural deposits, water			
Table of Detected Contaminants											
Contaminant	Violation Yes/No	Date of Sample	Level Detected (Avg/Max) (Range)	Unit Measure	;	MCLG	Regulatory Limit (MCL, TT or AL)	Likely Source of Contamination			
Lead	No	9/15/23	1.0 (2) Range 1.0-1.0	τ	Jg/l	15	AL=15	Corrosion of household plumbing			
Nickel	No	11/26/24	3.1	n	ng/l	N/A	N/A	Naturally present in the environment			
Nitrate	No	1/23/24	1.8	17	ng/l	10	10	Runoff from fertilizer use			
Copper	No	9/15/23	0.170 (1) Range (0.043-0.74	n	ng/l	1.3	AL=1.3	Corrosion of household plumbing			

Disinfection Byproducts										
Haloacetic Acids 29 Lower James	No	11/30/24 3/6/24 4/16/24 9/11/24	5.4 7.4 8.4 8.4	ug/l	N/A	60	By-product of drinking water chlorination			
Total Trihalomethanes	No	11/30/24 3/6/24 4/16/24 9/11/24	31.0 16.6 19.9 29.0	ug/l	N/A	80	By-product of drinking water chlorination			

Synthetic Organic Contaminants including Pesticides and Herbicides - Regulated									
Perfluorooctanoic Acid (PFOA)	No	7/5/24	6.54	ng/l	N/A	N/A	Released into the environment for widespread use in commercial and		

			industrial applications.

Synthetic Organi	c Contan	ninants in	cluding Pes	ticides an	d Herbic	ides – Non Reş	gulated
Perfluorobutanoic Acid (PFBA)	No	7/5/24	ND-2.46	ng/l	N/A	N/A	Released into the environment for widespread use in commercial and industrial applications.
Perfluoropentanoic Acid (PFPeA)	No	7/5/24	ND-5.24	ng/l	N/A	N/A	Released into the environment for widespread use in commercial and industrial applications.
Perfluorohexanoic Acid (PFHxA)	No	7/5/24	ND-4.02	ng/l	N/A	N/A	Released into the environment for widespread use in commercial and industrial applications.
		Tab	le of Detected	l Contami	nants		**
Contaminant	Violation Yes/No	Date of Sample	Level Detected (Avg/Max) (Range)	Unit Measure	MCLG	Regulatory Limit (MCL, TT or AL)	Likely Source of Contamination
PFOA	No	7/5/24	ND-2.90	ng/l	N/A	N/A	Released into the environment for widespread use in commercial and industrial applications
Perfluoroheptanoic Acid (PFHpA	No	7/5/24	ND-1.20	ng/l	N/A	N/A	Released into the environment for widespread use in commercial and industrial applications
Perfluoroundecanoic	No	7/5/24	ND	ng/l	N/A	N/A	Released into the environment for widespread use in

7/5/24

ND

ng/l

ng/l

N/A

N/A

No

Acid (PFUnA)

11-

Chloroeicosafluoro-

3-Oxaundecane-1-

Sulfonic Acid (11Cl-PF3OUdS) commercial and industrial applications

Released into the

environment for widespread use in commercial and

industrial applications

Perfluorododecanoic Acid (PFDoA)	No	7/5/24	ND	ng/l	N/A	N/A	Released into the environment for widespread use in commercial and industrial applications
-------------------------------------	----	--------	----	------	-----	-----	---

Notes:

- 1 The level presented represents the 90th percentile of the 10 sites tested. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it. The 90th percentile is equal to or greater than 90% of the copper values detected at your water system. In this case, 5 samples were collected at your water system and the 90th percentile value was 0.180 mg/l. The action level for copper was not exceeded at any of the sites.
- 2 The level presented represents the 90th percentile of the 5 sites tested. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it. The 90th percentile is equal to or greater than 90% of the lead values detected at your water system. In this case, 10 samples were collected at your water system and the 90th percentile value was 0.001 mg/l. The action level for lead was not exceeded at any of the sites.

Definitions:

<u>Maximum Contaminant Level (MCL)</u>: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible.

<u>Maximum Contaminant Level Goal (MCLG)</u>: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

<u>Maximum Residual Disinfectant Level (MRDL)</u>: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

<u>Maximum Residual Disinfectant Level Goal (MRDLG)</u>: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

<u>Action Level (AL)</u>: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Non-Detects (ND): Laboratory analysis indicates that the constituent is not present.

<u>Milligrams per liter (mg/l)</u>: Corresponds to one part of liquid in one million parts of liquid (parts per million - ppm).

<u>Micrograms per liter (ug/l)</u>: Corresponds to one part of liquid in one billion parts of liquid (parts per billion - ppb).

<u>Picograms per liter (pg/l)</u>: Corresponds to one part per of liquid to one quadrillion parts of liquid (parts per quadrillion – ppq).

WHAT DOES THIS INFORMATION MEAN?

As you can see from the table, our system had no violations. We have learned through our testing that some contaminants have been detected; however, these contaminants were detected below the level allowed by the State.

Lead can cause serious health problems, especially for pregnant women and young children.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women, infants, and young children. It is possible that lead levels at your home may be higher than at other homes in the community because of materials used in your home's plumbing. Jennie Clarkson Home Water System is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize

exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead.

IS OUR WATER SYSTEM MEETING OTHER RULES THAT GOVERN OPERATIONS?

<u>During 2024</u>, our system was in compliance with applicable State drinking water operating, monitoring and reporting requirements.

DO I NEED TO TAKE SPECIAL PRECAUTIONS?

Although our drinking water met or exceeded state and federal regulations, some people may be more vulnerable to disease causing microorganisms or pathogens in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care provider about their drinking water. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium, Giardia and other microbial pathogens are available from the Safe Drinking Water Hotline (800-426-4791).

WHY SAVE WATER AND HOW TO AVOID WASTING IT?

Although our system has an adequate amount of water to meet present and future demands, there are several reasons why it is important to conserve water:

- Saving water saves energy and some of the costs associated with both necessities of life.
- Saving water reduces the cost of energy required to pump water and the need to construct costly new wells, pumping systems, and water towers; and
- Saving water lessens the strain on the water system during a dry spell or drought, helping to avoid severe water use restrictions so that essential firefighting needs are met.

You can play a role in conserving water by becoming conscious of the amount of water your household is using, and by looking for ways to use less whenever you can. It is not hard to conserve water. Conservation tips include:

- ♦ Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So, get a good run for your money and load it to capacity.
- ♦ Turn off the tap when brushing your teeth.
- Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- Check your toilets for leaks by putting a few drops of food coloring in the tank, watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from one of these otherwise invisible toilet leaks. Fix it and you save more than 30,000 gallons a year.

CLOSING

Thank you for allowing us to continue to provide your family with quality drinking water this year. To maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all our customers. The costs of these improvements may be reflected in the rate structure. Rate adjustments may be necessary to address these improvements. We ask that all our customers help us

protect our water sources, which are the heart of our community. Please call our office on (845) 658-3159 if you have any questions.